Optimization methods for multi-criteria decisions in pharmacy

Authors

DOI:

https://doi.org/10.24959/sphhcj.23.302

Keywords:

pharmaceutical technological research, optimal composition, methods of multi-criteria optimization.

Abstract

Optimization methods for multi-criteria decisions in pharmacy

In pharmaceutical technological research, the determination of the quantitative composition of granules is considered as a task of multi-criteria selection. Today, to solve this problem, the regression analysis and multi-criteria optimization methods are widely used; they are based on mathematical models obtained for the object under study.

Aim. To identify a decision-making method in a multi-criteria space that is effective for use in pharmaceutical technology research with quantitative factors.

Materials and methods. The study uses tools of the popular computer mathematics system Mathcad (MathSoft Ins., USA) to automate the solution of mathematical problems. To automatically search for the type and coefficients of regression equations, the MS Excel application was used, namely: the data analysis package (regression analysis). The MS Word processor was used to edit the code.

Results. A variety of approaches to the formalization of the multi-criteria optimization task have been studied. The optimal quantitative content of excipients when developing the granule technology has been found using two different optimization criteria, which are formed according to different methodical approaches. The method proposed does not provide for the mandatory introduction of gradation of individual criteria or their weighting factors.

Conclusions. As a result of the comparison of multi-criteria optimization methods, the effectiveness of the decision-making method in the multi-criteria space has been shown; it synthesizes a mathematical procedure related to the vector of criteria and is based on determining the ideal point and introducing the concept of a norm into the space of functionals; it has not been mathematically proven, but it is practically useful decision-making algorithm compared to the mathematical method of convolution of criteria. The optimization method proposed has advantages that are manifested in the possibility of using a relatively simple mathematical apparatus and simplified logic of obtaining a solution.

References

Us, S. A., Koriashkina, L. S. (2014). Modeli y metody pryiniattia rishen : navch. posib. Donetsk : NHU. 300.

Semenova, N. V., Koliechkina, L. M. (2009). Vektorni zadachi dyskretnoi optymizatsii na kombinatornykh mnozhynakh: metody doslidzhennia ta rozv’iazannia: monohrafiia. Kyiv : Naukova dumka, 266.

Neumann, V. J., Morgenstern, O. (2004). Theory of Games and Economic Behavior. Princeton: Princeton University Press, 776. doi:10.1515/9781400829460.

Book Review: The Theory of Games and Economic Behavior. (2022). The Collected Papers of Leonid Hurwicz, 2 022. 1. Р. 349–352. doi:10.1093/oso/9780199313280.003.0022.

Kondruk, N. E., Maliar, M. M. (2019). Bahatokryterialna optymizatsiia liniinykh system : navch. posibnyk. Uzhhorod : RA “AUTDOR-ShARK, 76.

Hlushchenko, M. M. (2015). Metody rozv’iazku bahatokryterialnoi zadachi optymizatsii mekhanizmiv finansovoi pidtrymky sub’iektiv zovnishnoekonomichnoi diialnosti. Investytsiino-innovatsiina diialnist, biudzhetna i podatkova polityka, 2(112), 23–27.

Kushlyk-Dyvulska, O. I., Kushlyk, B. R. (2014). Osnovy teorii pryiniattia rishen, 94.

Kutova, O. V., Sahaidak-Nikitiuk, R. V. (2023). Metodychnyi pidkhid do bahatokryterialnoho vyboru u farmatsevtychnykh doslidzhenniakh z kilkisnymy faktoramy. Visnyk farmatsii, 1(105), 38–43.

Kutova, O. V. (2021). Deiaki aspekty tekhnolohichnykh doslidzhen v farmatsii. The world of science and innovation : Proceedings of the 11th International scientific and practical conference. Cognum Publishing House. London, United Kingdom, 634–641.

Kutova, O. V., Kovalevska, I. V., Kutovyi, D. S., Shapovalov, O. V., Zhuravskyi, A. O. (2019). Svidotstvo pro reiestratsiiu avtorskoho prava na tvir No. 82707.

Kutova, O. V., Sahaidak-Nikitiuk, R. V. (2021). Metodychnyi pidkhid do vyrishennia zavdan bahatofaktornoi optymizatsii u farmatsevtychnykh doslidzhenniakh. Vidkryvaiemo nove storichchia: zdobutky ta perspektyvy : materialy nauk.-prakt. konf. z mizhnar. uchastiu, prysviach. 100-richchiu Natsionalnoho farmatsevtychnoho universytetu. Kharkiv : NUPh, 86–88.

Kutova, O. V., Kovalevska, I. V. (2020). Postanovka ta vyrishennia zadach bahatokryterialnoi optymizatsii pry provedenni naukovykh doslidzhen v farmatsii. Problemы y perspektyvy razvytyia sovremennoi nauky v stranakh Evropy y Azyy : materialy KhKhVIII Mizhnar. nauk.-prakt. internet-konf., Pereiaslav-Khmelnytskyi, 24–25.

Kutova, O., Sahaidak-Nikitiuk, R., Kovalevska, I., Demchenko, N. (2022). Setting the equation of regression to determine the technological factors. ScienceRise: Pharmaceutical Science, 1(35), 52–57.

Kovalevska I. V., Ruban O. A., Kutova O. V. (2009). Ukrainskyi zhurnal klinichnoi ta laboratornoi medytsyny, 1 (4), 22–25.

Lapach, S. M. (2020). Teoriia planuvannia eksperymentiv: Vykonannia rozrakhunkovo-hrafichnoi roboty. Kyiv, 86.

Hroshovyi, T. A., Martseniuk, V. P., Kucherenko, L. I., Vronska, L. V., Hureieva, S. M. (2008). Matematychne planuvannia eksperymentu pry provedenni naukovykh doslidzhen v farmatsii. Ternopil : Ukrmedknyha.

Zasiadko, A. A. (2020). Sposoby sproshchennia zadachi neliniinoho prohramuvannia na osnovi klasyfikatsii obmezhen. Systemy obrobky informatsii, 2 (161), 59–70.

Hamdy, A. Taha (2017). Operations Research: An Introduction ; 10th Ed. Harlow: Pearson, 848.

Richards, K. (2018). Machine Learning: For Beginners. CreateSpace Independent Publishing Platform, 138.

Dubrovin, V. I., Deineha, L. Yu. (2014). Bahatovymirni metody optymizatsii : metodychni vkazivky do laboratornykh robit z dystsypliny “Matematychni metody optymizatsii ta doslidzhennia operatsii”. Zaporizhzhia : ZNTU.

Malitskyi, Yu. O., Kryvohubchenko, S. H., Ivanov, Yu. Yu. (2019). Metody optymizatsii Neldera-Mida ta Koshi. XLVIII naukovo-tekhnichna konferentsiia pidrozdiliv VNTU. Vinnytsia. URL: https://conferences.vntu.edu.ua/index.php/all-fksa/all-fksa-2019/paper/view/6680.

Hryn, H. Y., Kutovaia, O. V., Kutovoi, D. S., Shulha, Y. V. (2018). Opredelenye optymalnykh parametrov protsessa hazyfykatsyy tverdoho termolyza. Voprosy khimiii khimicheskoi tekhnologii, 5, 97–101.

Published

2023-11-17

Issue

Section

Social medicine and pharmacy: past, present and development prospects